Stability and Uniqueness for the Crack Identification Problem

نویسندگان

  • Zakaria Belhachmi
  • Dorin Bucur
چکیده

The paper deals with the identifiability of non-smooth defects by boundary measurements, and the stability of their detection. We introduce and analyse a new pointwise regularity concept at the boundary of an open set which turns out to play a crucial role in the identifiabilty of defects by two boundary measurements. As a consequence, we prove the unique identifiability for a large class of closed sets, including sets with infinite number of connected components of positive capacity and totally disconnected sets. In order to rigorously justify numerical approximation results of defects by optimal design methods, we prove a geometric stability result of the defect identification process, without any a priori smoothness assumptions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crack Influences on the Static and Dynamic Characteristic of a Micro-Beam Subjected to Electro Statically Loading

In the present work the pull-in voltage of a micro cracked cantilever beam subjected to nonlinear electrostatic pressure was studied. Two mathematical models were employed for modeling the problem: a lumped mass model and a classical beam model. The effect of crack in the lumped mass model is the reduction of the effective stiffness of the beam and in the beam model; the crack is modeled as a m...

متن کامل

Damage Assessment using an Inverse Fracture Mechanics approach

This paper studies the application of an inverse methodology for problem solving in fracture mechanics using the finite element analysis. The method was applied to both detection of subsurface cracks and the study of propagating cracks. The procedure for detection of subsurface cracks uses a first order optimization analysis coupled with a penalty function to solve for the unknown geometric par...

متن کامل

Existence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations

‎In this paper‎, ‎we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations‎. ‎By a priori estimates‎, ‎difference and variation techniques‎, ‎we establish the existence and uniqueness of weak solutions of this problem.

متن کامل

Existence and uniqueness of positive and nondecreasing solution for nonlocal fractional boundary value problem

In this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form $D_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0

متن کامل

Existstence and uniqueness of positive solution for a class of boundary value problem including fractional differential equation

In this paper we investigate a kind of boundary value problem involving a fractional differential equation.  We study the existence of positive solutions of the problem that fractional derivative is the Reimann-Liouville fractional derivative. At first the green function is computed then it is proved that the green function is positive. We present necessary and sufficient conditions for existen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2007